

Enhancing Humanoid Robot Autonomy: An ISPU-Based Approach to Fall Detection and Prevention

Giuseppe Messina

POLITECNICO DI MILANO Polo Territoriale di Lecco SEPTEMBER 18-20, 2024

Introduction

- This experiment is part of a complete ISPU (Intelligent Sensor Processing Unit) project in collaboration with University of Catania.
- The main objective is to improve the stability of a humanoid robot, decreasing Microcontroller processing effort.
- The ISPU is used to collect real-time data on the robot's movements.
- These data are used to detect any imbalances in the robot and to take corrective actions in real-time.

Kondo Robot with ST-Nucleo

Kondo KHR-3HV

- Replaced the Renesas-based main board for motor control with the Core STM32F44RE board.
- Added BlueCoin board for BLE communication
- STM32-Kondo-Bot is paired with an ad-hoc Android app.

Customizations

- Two expansion boards have been developed to connect the BlueCoin card and the Nucleo STM32
 - For the BlueCoin, we used an expansion that allows to connect data and power from the Nucleo.
 - For the Nucleo board we have developed an expansion that allows the connection of 6 data channels, power supply and battery control.
- We could have done that without these expansions, but it would have been a lot less tidy.

No custom expansion boards

Bluecoin and transceiver

Nucleo and Motors Connector

STM32CubeMx

C10 A15

VDD

VSS

PA12

PA11

PA10

PA8

PC9

PC8

PB15

PB14

PB13

PB12

TMS

USART1_TX

USART6 RX

USART6 TX

5 1 VBAT 2 B1 [Blue PushButton] RCC_OSC32_IN RCC_OSC32_OUT RCC_OSC_IN 7 RCC_OSC_OUT 6 6 PC0 PC1 PC2 7 PC3 STM32F446RETx /SSA LQFP64 VDDA UART4_TX ADC1_IN1 USART TX 9 - 🦉 ADC1_IN4 ADC1_IN6 .D2 [Green Led] JSART3_TX JSART_R

• Peripherals:

- USART1 → Red Line
- USART3 \rightarrow Blue Line
- UART4 \rightarrow Yellow Line
- UART5 \rightarrow Green Line
- USART2 → Debug USB
- USART6 → Communication with Bluecoin
- ADC1 → Battery Management

ICS3.5 Communication Standard

- High-speed communication of up to 1.25 Mbps
- Max 32 servo motors connected on the same line
- Single data line used for serial communication (Half-Duplex)
- Multi-drop connection
- Signal level 5 V TTL
- ID Setting
- Read and Write Parameters
- Setting the Location

CMD	SC	DATA
Command Header+ ID	Sub-control	Data

Firmware Implementation

- ICS.h:
 - ics_get_id()
 - ics_set_id()
 - ics_get_speed()
 - ics_set_speed()
 - ics_get_stretch()
 - ics_set_stretch()
 - ics_get_current()
 - ics_pos()
 - ics_free()

```
uint16_t ics_pos(ICSData *r, uint16_t id, uint16_t pos, UART_HandleTypeDef *huart)
{
```

```
uint16_t byte_in = 3;
uint16_t byte_out = 4;
```

```
if(id>31)
```

snprintf(r->error,128,"ERROR: Invalid servo ID (0-31)");
return -1;

if(pos>16383)

snprintf(r->error,128,"ERROR: Invalid servo position (0-16383)");
return -1;

```
//build command
```

```
r->swap[0] = id | ICS_CMD_POS; //Command
r->swap[1] = (pos >> 7) & 0x7F; //POS_H: high 7 bits of pos
r->swap[2] = pos & 0x7F; //POS_L: low 7 bits of pos
```

```
//send command
HAL_UART_Transmit(huart, r->swap, byte_in, ICS_POS_TIMEOUT);
```

```
for(int i=0; i < byte_in; i++)
    r->swap[i] = 0;
```

```
//wait for the the response
HAL_UART_Receive(huart, r->swap, byte_out, ICS_POS_TIMEOUT);
```

```
//return the position
return (((r->swap[2] & 0x7F) << 7) | (r->swap[3] & 0x7F));
```


Intelligent Sensor Processing Units

ISPUs introduce artificial intelligence into the world of sensors, within a compact and low-power device:

- The core reads the values generated by the sensors.
- It processes them using pre-processing algorithms or artificial intelligence.
- It provides the result via I2C or SPI interface.

Used sensor: LSM6DSO16IS

- 3-axes Accelerometer and Gyroscope.
- 32KB of programmable RAM.
- 8KB of data RAM.

Data recorded by the gyroscope

Unico-GUI

Dataset Construction

Falls with Moving Robots

Dataset acquisition: 20 sequences for each classes (stationary, walking, front_falling, right_falling, back_falling, left_falling) of about 250 samples.

First Developed Model

- The model is inspired by a Human Activity Recognition network*
- The network has been significantly simplified to meet the ISPU's limited memory resource needs.
- The sampling rate used by the sensors is 416 Hz
- The network is structured as follows:
 - 6-filter convolutional layer with ReLU activation function and 71 × 2 input shape
 - Dropout layer with a factor of 0.5, to prevent overfitting
 - Flatten layer
 - Strongly connected output layer with Softmax activation function

Results

Accuracy around 93%

75% Training set, 25% Test set

Second Developed Model

- Final release size of the first model, after compression and quantization + Magdwick filter (15KB) was 33000 bytes over 32768 bytes available on ISPU.
- The network has been further simplified to meet the ISPU's memory and processing time:
 - The sampling rate used by the sensors has been reduced to 52 Hz (comprise network reaction time)
 - The network is structured as follows:
 - 6-filter convolutional layer with ReLU activation function and 25 × 2 input shape
 - Dropout layer with a factor of 0.5, to prevent overfitting
 - Flatten layer
 - Strongly connected output layer with Softmax activation function
 - Acquisition Dataset errors were removed

 Final release size of second model, after compression and quantization: 27828 bytes with an Accuracy of about 94%

Final Accuracy

Accuracy around 94%

Predicted label

75% Training set, 25% Test set

Falling+Recover

Conclusion

- A complete Falling Detection system with Recover has been developed
- The system is based on an Intelligent Sensor Processing Unit, allowing real-time processing and decreasing Microcontroller computational effort.
- Future works:
 - Time of Flight and Camera integration
 - ROS integration, for real-time Avatar visualization

Our technology starts with You

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

